Effects of climate change on trait-based dynamics of a top predator in freshwater ecosystems.

نویسندگان

  • Yngvild Vindenes
  • Eric Edeline
  • Jan Ohlberger
  • Oystein Langangen
  • Ian J Winfield
  • Nils C Stenseth
  • L Asbjørn Vøllestad
چکیده

Predicted universal responses of ectotherms to climate warming include increased maximum population growth rate and changes in body size through the temperature-size rule. However, the mechanisms that would underlie these predicted responses are not clear. Many studies have focused on proximate mechanisms of physiological processes affecting individual growth. One can also consider ultimate mechanisms involving adaptive explanations by evaluating temperature effects on different vital rates across the life history and using the information in a population dynamical model. Here, we combine long-term data for a top predator in freshwater ecosystems (pike; Esox lucius) with a stochastic integral projection model to analyze concurrent effects of temperature on vital rates, body size, and population dynamics. As predicted, the net effect of warming on population growth rate (fitness) is positive, but the thermal sensitivity of this rate is highly size- and vital rate-dependent. These results are not sensitive to increasing variability in temperature. Somatic growth follows the temperature-size rule, and our results support an adaptive explanation for this response. The stable length structure of the population shifts with warming toward an increased proportion of medium-sized but a reduced proportion of small and large individuals. This study highlights how demographic approaches can help reveal complex underlying mechanisms for population responses to warming.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling the effects of climate change on the distribution of Kura bleak (Alburnus filippii Kessler, 1877) on the Iranian scale

The phenomenon of climate change is the greatest environmental challenge facing in the world today. The phenomenon is expected to affect all ecosystems in the world. Freshwater ecosystems are more vulnerable to these changes, as freshwater is exposed to various human pressures such as hydrology, morphology, connectivity and water quality. Therefore, climate change along with the mentioned issue...

متن کامل

Fates beyond traits: ecological consequences of human-induced trait change

Human-induced trait change has been documented in freshwater, marine, and terrestrial ecosystems worldwide. These trait changes are driven by phenotypic plasticity and contemporary evolution. While efforts to manage human-induced trait change are beginning to receive some attention, managing its ecological consequences has received virtually none. Recent work suggests that contemporary trait ch...

متن کامل

Eco-Evolutionary Trophic Dynamics: Loss of Top Predators Drives Trophic Evolution and Ecology of Prey

Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical ...

متن کامل

Dynamics of Food Chain Model: Role of Alternative Resource for Top Predator

In this paper, effect of alternative resource for top predator in food chain model with holling type III functional response is seen . Proposed model is demonstrated in respect of analytical as well numerical results. Bifurcation study with the variation of alternative resource and half saturation constants are done numerically. Simulation results shows that suitable alternati...

متن کامل

Effects of climate change on water use efficiency in rain-fed plants

Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American naturalist

دوره 183 2  شماره 

صفحات  -

تاریخ انتشار 2014